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Matrix transformation of digital image and its periodicity
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Abstract The periodicity of a general matrix modular transformation is discussed, and a simple proof of a suffi-
cient and necessary condition that a matrix transformation has periodicity is given. Using a block matrix method, the
higher dimensional transformation and its inverse are studied, and a simple algorithm for calculating their periods is put
forward . The security of n-dimensional Amold transformation and its inverse is also discussed. The resulis show that the

two transformations are applicable in scrambling and recovering images.
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There are many ways for scrambling a digital image. Different encoders are used for different re-
quirements. Amold transformation is an interesting one with good transformation periodicity, which, as
the encoder and decoder, can control randomly the number of the transformations in the image transporta-

tion.

Using the properties of Arnold transformation, some good effects on scrambling images have been

achieved. The application of Arnold transformation! !’

in the covering of image information has been dis-
cussed in Refs. [2~9] and Ding’s Ph.D dissertation' . However, the classical Amold transformation
has only four parameters which are not sufficient for data-cryptoguard. The two-dimensional Amold trans-
formation has been extended to higher dimensional by Zou et al.? . It is valuable to generalize Arnold
transformation in view of mathematics. Enlightened by the idea of Amold transformation, Qi et al .1
have studied the higher dimensional transformation (module operation) and have given a sufficient and
necessary condition that a matrix transformation has periodicity. They have also discussed the function of

the scrambling transformation in the gray level space of a digital image .

Can we simplify the proof of the sufficient and necessary condition for the matrix transformation in
Ref. [9]7 Do a higher dimensional transformation and its inverse have periodicity or not? Can we present

a simple algorithm to calculate the periods of a matrix transformation? These problems remain unsolved .
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This paper will address them.

It should be emphasized that the results of higher dimensional Amold inverse transformation are
different from those presented in Refs. [2 ~9] and Ding’s Ph.D dissertation. The algorithm put for-
ward in this paper is a new method. The inverse transformation gives a new method of scrambling im-

ages. On the other hand, a new way for restoring the scrambled images has been found.
1 Condition for a matrix transformation to have periodicity

A digital image can be regarded as a relevant numerical matrix, each element of which corre-
sponds to a pixel of the digital image. All kinds of transformations of the digital image can be realized
by changing the positions of the elements in the matrix or the color value of image (RGB for short) .
A digital image is not restored after a series of the same transformations until the numerical matrix cor-
responding to the digital image has periodicity. Therefore, the study on periodicity of matrix transfor-
mation is important for encoding and decoding a digital image. In this section, we will concentrate on

the periodicity of the matrix transformation .

In the sequel, for convenience, let X, = (%, -* yx )T, X = (&, )T, Xys Xy,

E {09 1) "')N_l;; Kn=(k1)'"9kn)Tand K,n= (klliu"kln)T-

Definition 1. For an arbitrarily given positive integer N and a digital image P ,the following

transformation
X', = AX,(modN), (A = (aij)n”, a; € Z) (1)

has a period my with respect to the image P and my is the minimal times that make the image P re-
turn to its original status. For an arbitrary matrix A = (aij)mx,,, we have A (modN) = (a;

(modN)) p s a-

Proposition 1. For a given fixed positive integer N,if X', = AX,(modN ), then A™X, (mod

N) can be obtained after m times transformations for X,, .
Proof. If X', = AX,(modN), we have X', = AX, + K,N. Thus
AX', = A[AX, + KN](modN) = [A%X, + AK,N](modN) = A*X,(modN).
Proposition 1 is proved.
Using Proposition 1, the following results can be obtained.

Proposition 2. If Transformation (1) has the period m , then m is the smallest positive inte-
ger which makes A"(modN) = E,, where E, is the n-order unitary matrix.

Theorem 1!°),  The sufficient and necessary condition that Transformation (1) has periodicity
is that | A| and N are prime to each other, where | A | is the determinant of the matrix A4 .

Proof( Sufficiency) . To prove that (1) has periodicity, it suffices to verify that Aa (modN)
# AB(modN), or A(a — B) (mod N) 0, for any two different n-dimensional vectors @Z and B .
In other words, for any n-dimensional vector X = (x;, x,, ***,x,)7, the fact that AX(modN) =0
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means X =0.
Set AX(modN) =0. By Laplace theorem in the determinant theory, we get

|A|'x1= (A]l'k1+"'+A”1‘kn)N

Al X, = (Aln' k1+ Tt +Ann * ku)N’
where A;, i, j=1, ***,n, is the algebraic complement of the element a; in the matrix A .

Since | Al is prime to N, N is a factor of x;; and xiE{O, 1,2, ,N=1},i=1,2, -,

n, we can see that X = 0.

Proof (Necessity). For the given positive integer N, if the transformation has periodicity,
then it should be proven that | A| and N are prime to each other. Suppose that m is the period of the
transformation defined by (1). From Proposition 2 we have A™(modN) = E, . Hence there exist pos-

itive integers by, i, j€ {1, 2, -, n}, making

1 + b”N blZN se blnN
ar b21N 1+ bzzN o ban
bnlN anN e 1 + bnnN

According to the Laplace theorem in the determinant theory, integer K exists and |A™| =1+ KN,
Without loss of generality, we assume that (1A™1, N)=1¢(¢t>0), |Al =ts, N=tp.Then (s,
p) = 1. Therefore, (ts)™ — Kip = 1. It is easy to verify that 1 can be divided by ¢. Thus ¢ = 1 that
is, |A| and N are prime to each other.

2 The n-dimensional Arnold transformation and its periodicity

In this section, we study the higher dimensional Amold transformation and its inverse. Applying
the idea of a block matrix, we propose a simple algorithm to calculate the periods so as to avoid so-

phisticated proof.

Definition 21°!.  For a fixed positive integer, the following transformation is called the n-di-

mensional Arnold transformation:

1 1 1 - 1 1 1
X Xy
1T 2 .2 .- 2 2 2
%', -7
=1 2 3 e 3 3 3 (modN), (2)
x,'l x’l
1 2 3 « p~2 n-1 n

where x,, x,, **,x,€10, 1,2, -, N-1}.
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01, n-1 = (0, 0, ""0)1, n-1 = 05_1.1’ ay, p-1 = (1’ 1, ""1)1, n-1 = aryrz_1,1’
Y1, n-1 = (1, 2,y n - 1)1, n-1 = 7}:—1,1’ Bi, n-1 = (0,0, ---,0, - 1)1, n-1 = ﬂ’fz—l,l’

where T denotes transposition of a matrix. Obviously,
Bkak,l = (1, 2, -..,k)T = 7k,1’ 1 + al.kak,l = k -+ 1,

Proposition 3. B2 =A,
Proof. It is easy to check that

0,11 By 0y, nr 1 A, Yno1,1
B, = = , A, = . (3)
1 ap, n-1 B,.1 a,.1:1 71, n-1 n

On the other hand, suppose that B = A, holds. Then

B, 2 - (0,,,l B, )(ol,k 1 )= ( B} By, 1 )= (B%, yk,l) - A
' 1 a4/ By ey, ar, 1By 1+ ap, e, Y, k+1 !
By induction, we can complete the proof of Proposition 3.
Definition 3. Transformation
X, = A7'X (modN) (4)

is called the inverse transformation of the n-dimensional Amold transformation defined by (2). And

A;'in Eq. (4) has the following property.

Proposition4. If A;'= (a’ij)nx",then a’

,-jis an integer, i, j=1, ***,n.
Proof. With Proposition 3, we obtain |A, | =1. Hence A;'= A /IA | = A}, where A

is the companion matrix of A,. Clearly, A, is an integer matrix, so is A . Proposition 4 is proven.

Proposition 4 implies that the Definition 3 has practical significance. The digital image transfor-
mations are usually realized by computing the gray levels of images, which are integers. Hence the in-

verse matrix A ;! is suitable for integer computing.

Theorem 2. The n-dimensional Armold transformation and its inverse transformation have the
same periods.

Proof. It follows from (2)that X', = AX,(modN) + K,N.
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Then
A'X, = ATMAX, + K,N] = X, + AT'K,N.
By what we have shown before, we get A 'K, = K',,.
Therefore, A "' X ' .(modN) = X,. The theorem is proven.

Theorem 3. For a given positive integer N, suppose that my is the period of n-dimensional
Arnold transformation (2). Then my = Mgn{ mlA™(modN) = E,|.

This theorem can be proven directly from Proposition 2.

By Theorem 3, we can give a simple algorithm to calculate the periods of higher dimensional Amold
transformation. In view of Proposition 2, a general algorithm for calculating the periods of higher-dimen-
sional matrix transformation can also be obtained, which is different from those presented in Refs. [2 ~
9] and Ding’s Ph.D Dissertation’ . On the one hand, the algorithm established in this paper is very
simple and can be applied to an arbitrary matrix module transformation. On the other hand, computing
the periods of n-dimensional Arnold transformation is independent of their orders. The discussions in

Refs. [2 ~9] are only some special cases of the new algorithm put forward in this paper.

Table 1 gives some calculated results. According to the periods given in this table, distinct dimen-
sions and orders are purposively selected to scramble images. Receivers, according to the corresponding
dimensions and orders, by transformation or inverse transformation, can restore the scrambled images.
The periods of other Amold transformations with different dimensions and orders can also be calculated di-
rectly by Theorem 3.

Table 1 The periods of different dimensional Amold transformations relevant to N

Period/ my Period/ my
N N

Dimension Dimension

2 4 2 3 4

3 4 13 9 25 50 155 155
4 3 7 7 50 150 1085 1085
5 10 31 31 60 60 2821 1953
6 12 91 63 100 150 1085 1085
7 8 21 57 120 60 5642 3906
8 6 14 14 125 250 775 775
9 12 39 27 128 96 224 224
10 30 217 217 256 192 448 448
11 5 133 133 480 120 22568 15624
12 12 91 63 512 384 896 896

3 Security of n-dimensional Arnold transformation and its inverse

In this section, we discuss the security of scrambling images by n-dimensional Amold transfor-

mation and its inverse. Refs. [2~9] and Ding’s Ph. D Dissertation” discussed scrambling digital

1) See footnote 1) on page 542
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Original Block ) ) Send | Transformation/ . Original
. —| —| Transformation |——» ] —| Restoration |}
image image inverse image
Original Block Inverse Send lr{verse - Original
. —| — ) — | transformation/ —»| Restoration ||
image image transformation : Image
transformation

Fig. I Flow diagram of transformation and inverse one.

image. However, they did nol discuss the security of
scrambling images. In what follows, the combinatori-
al transformation method to scramble digital images is

introduced as follows.

Step 1. Divide an original image into different

blocks according to the assigned way.

Step 2. Based on step 1, distinct dimensional

Arnold transformations or their inverse ones are ap-

plied to different block matrices to scramble them.

Using the above-mentioned method, no restora- Fig. 2 800 x 600, 24 bits original image.

Fig. 3 () and (b) Arnold transformation results from “ig. 2 respectively; (¢} and (d) are 1 time and 5 times inverse

transformations, respectively.
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tion image for the original can be obtained unless the special block matrix method is used. It is very
difficult to restore the original image for illegal attackers, because there are lots of ways to divide an
image into blocks and each block matrix has two choices: transformation and inverse transformation as
shown in Fig.1. Therefore expected security can be attained. If a single Arnold transformation is ap-
plied to scramble digital images, security is weak. Thus the combinatorial transformation method has

an important practical signification in scrambling the digital image.

Now we give some examples showing the difference between the single Arnold transformation and

blocking Arnold transformation .

We scramble an original image as shown in Fig.2 by 3-dimensional Arnold transformation and
inverse transformation, and combinatorial transformation respectively. The transformed results are
shown in Figs.3 and 4. Although the difference in the transformed results is unknown, one can re-
store the original image by the corresponding times transformations or inverses to Fig. 3 (Fig. 5(a));
while one cannot restore the original image from Fig.4 unless the special block matrix methods used in
scrambling image are known. Figs. 5 (b) and 5(c) are the results after 5 times 3-dimensional Arnold
transformations (or 2-dimensional ones) and 5 times inverse ones for Figs. 4(b) and 4(d), respec-

tively. One cannot obtain the original image because the block matrix used in scrambling the original

Fig. 4 Results of 2-dimensional and 3-dimensional Arnold transformations and their inverse transformations for the

blocked image of Fig. 2. (a) and (b), results of 1 time transformation and 5 times ones respectively; (c) and (d), re-

sults of 1 time transformation and 5 times inverse ones respectively.
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Fig. 5 Recovered results of scrambled images.(a) For Fig. 3;(b) for Fig. 4(b); (c) for Fig. 4(d).

image was not applied. This shows that the combinatorial transformation method has good security .
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